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      Abstract: A digital 2D-FIR filter with linear phase, circularly symmetric with respect to 

the origin of the frequency plane, is designed using the two-dimensional windowing method. 

An economical filter with high information efficiency is obtained by applying the balanced 

realization method to this full-order filter.  The result is a linear phase IIR filter whose 

frequency response is very close to that of the initial filter. 
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1. Introduction  

Digital 2D-filters have many applications 

in the analysis and filtering of radiographic and 

photographic image data. These data are used 

in meteorology, seismology, medicine, 

geophysics, crystallography, etc.  Applications 

include processing X-ray data, magnetic data, 

gravity records, etc.  Visual identification of 

objects by industrial robotic systems and target 

following in radar systems process image data 

too, and require a very high information 

processing efficiency, usually in real-time. 

Similarly to the 1D digital filters, the 2D-filters 

can be divided into two classes: recursive 

filters (IIR filters) and nonrecursive filters (FIR 

filters). 

      The synthesis of a 2D-FIR filter 

essentially consists in finding the impulse 

response h(m,n), or the transfer-function 

H(z,w), which satisfies the specifications 

[1,2,3,4]. There are four standard approaches 

to design 2D-FIR filters: the windowing 

method, frequency sampling method, 

frequency transformation method, and the 

optimal design method. The first two methods 

are extensions of the 1D case by a suitable 

modification of the synthesis procedure.  

      The windowing method is considered 

in this paper, due to its simplicity. The 2D 

window used in the filter design is typically 

obtained starting with a 1D window, using the 

classical Huang’s method [1] to get a circularly 

symmetric two-dimensional window; other 

two-dimensional windows, like the Gaussian 

window, can also be used in the synthesis of a 

2D-FIR filter. Mathematical state-space 

representation of a 2D-FIR filter has a very 

important advantage, by enabling  to perform 

equivalence transformations, model reduction, 

stability test, and other operations; for instance, 

a canonical state-space form of a 2D-FIR filter 

which belongs to the class of separable filters 

(i.e., with separable denominator in the 

transfer-function) can be obtained [5].       

In the second part of this paper, a model 

order reduction technique, known as 
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approximation by balanced realization [6, 7], is 

applied to a full-order 2D-FIR filter designed 

by the windowing method, to obtain a reduced 

order separable 2D-IIR filter.  As it will be 

shown, the resulting filter is very close to the 

initial filter, and the approximation errors of 

the frequency response are bounded by the 

sum of the neglected Hankel singular values of 

the initial filter. Consequently, the frequency 

response of the resulting filter differs only 

slightly from that of the initial filter, and the 

phase remains linear in the bandwidth region.  

In addition, the obtained 2D-filter is more 

economical, i.e., has lower complexity.  

Therefore, by combining the windowing 

method and balanced realization method, 

excellent results are obtained, as it will be 

shown by simulations performed in 

MATLAB
®
 7.1. 

 

2. The windowing method 

Let us suppose, for all considered types of 

filters, that the frequency responses can be 

described by a circularly symmetric function, 

i.e., H(ω1,ω2) is a function of (ω1
2
+ω2

2
)

1/2
.  

Assume that the desired frequency response �����, ���	is known.  By inverse Fourier 

transform of		�����, ���, it is possible to 

determine the desired impulse response of the 

filter, ℎ���, ��. Generally, ℎ���, �� is an 

infinite sequence. But using the windowing 

method, a 2D-FIR filter is obtained by 

multiplying ℎ���, �� with a window 
��, �� ,  ℎ��, �� = ℎ���, ��
��, ��.             (1) 

 

If both functions ℎ���, ��	and 
��, �� 
are symmetric with respect to the origin then 

their product ℎ��, �� is also symmetric, so that 

the resulting filter will have a null phase. 

      From (1) and the properties of the 

Fourier transform [8], 

 ����, ��� = �����, ��� ⊛����, ���                                                                            = 1�2��� 	� � �����, ���������
�����

�
�����− ��, �� − ����  ��  ��, 

where  	⊛ denotes the 2D convolution 

product. The effect of the window in the 

frequency domain is to smooth   �����, ���.  

If   the wideness of the principal lobe of 	����, ���	 is small, the wideness of the 

transition band of ����, ��� is small too. If 

the secondary lobes have small amplitudes, 

then the oscillations in the bandwidth region 

and the cut-off band have also small 

amplitudes. 

       A 2D window used in the filter 

synthesis is typically obtained starting from a 

1D window; the classical Huang’s method [1] 

enables to obtain a 2D window 
��, �� as 

follows 

 
��, �� = !
"�#�, #��|%��&,%��',         (2.a)                                                                        
"�#�, #�� = !
(�#�|%�)%��*%�� 	.         (2.b)                                                                             

 

The function 
(�#�  in (2.b) is an analog 

(continuous time) 1D window, which is turned, 

in this method, to an analog 2D window 
"�#�, #��.  Note that	�"�Ω�,Ω��, the Fourier 

transform of 
"�#�, #��, is a circularly 

symmetric function. However, there is no 

transformed version of 	�(�Ω�, the Fourier  

transform of 
(�#�. Specifically, 	�"�Ω�,Ω�� 
is connected to  
(�#� by [8] 

 �"�Ω�,Ω�� = !+�,�|-�.Ω��*Ω�� =2�/ #∞%�0 	 !
(�#�10�#,� #|-�.Ω��*Ω��	,      (3)                 

 

where 10�∙�	is the Bessel function of the 

first type and zero-order.  The function +�,� in 

(3) is the Hankel transform of	
(�#�. The 

analog 2D window  
"�#�, #�� is sampled for 

obtaining a 2D window 
��, ��. The resulting 

sequence 
��, �� is a circularly symmetric 

window. From (2.a) and (2.b), 

����, ��� =∑ ∑ !�"�Ω�,Ω��|Ω��4����5�,	Ω��4����5�∞5���∞
∞5���∞ .    (4)                              

 

There is an aliasing effect in (4). The 

circular symmetry of 
���, ��� does not 

guarantee the circular symmetry of its Fourier 

transform ����, ���. Indeed, the function ����, ��� can deviate considerably from the 

circular symmetry, for ���, ���	far from the 

origin. However, close to the origin, the 

aliasing effect is reduced and ����, ��� tends 

to be close to a circular symmetry. Additional 
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details about two-dimensional windows can be 

found in [9, 10]. 

 

3. State-space modeling of 2D-
FIR filters 

Assuming that 

 

��6,
� = ∑ ∑ ℎ�7, 8�6�9':�0&9�0 
�:, 
  

 

is the transfer-function of a discrete 2D-FIR 

filter of order  ��, ��, where z
-1

 and w
-1

 are 

unit backward operators, 	��6, 
� can be 

written in the form 

��6,
� = ∑ ∑ ;�9,:�<=>?@ABC=?BC D@>A<=D@  . 

 

This shows that such a 2D-FIR filter 

belongs to the class of filters with separable 

denominator, i.e., the denominator polynomial 

with two independent variables of the transfer-

function of a filter in this class can be written 

as a product of two polynomials, each 

depending on a single variable only. The 

transfer-function of these filters is expressed as 

follows:   

 ��6,
� = E�<,D�F��<�F��D� .                            (5)                             

  

 

Any causal 2D system having a transfer-

function with a separable denominator can be 

modeled in the local state-space Roesser’s 

characterisation in the form [5, 11] 

 

GH;�7 + 1, 8�HJ�7, 8 + 1�K = GL��� 0L�N� L�O�K GH;�7, 8�HJ�7, 8�K +GP���P���K Q�7, 8�,                                          (6.a) 

R�7, 8� = ST��� T���U GH;�7, 8�HJ�7, 8�K + VQ�7, 8�,    7, 8 ≥ 0 .                                (6.b) 

 

It is assumed here that L��� = 0;  the case L�N� = 0  is similar. 

Above, H; ∈ ℝ& and HJ ∈ ℝ'			represent 

the horizontal and vertical components of the 

state, respectively, Q ∈ ℝZ	is the input vector, R ∈ ℝ[ is the output vector, 	�7, 8� are 

nonnegative integer numbers, and L���,	L�N�, L�O�, P���, P���, T���, T��� and D are constant 

real matrices with suitable dimensions, given 

in a canonical form, as follows [5]   
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P��� = S1 0 ⋯ 0U] , P��� =Sℎ0� ℎ0� ⋯ ℎ0'U],                                (7)                      T��� = Sℎ�0 ℎ�0 ⋯ ℎ&0U,     T��� = S1 0 ⋯ 0U, 
where (.)

T
 denotes the transpose of the matrix 

(.). 

The ^9 and   _9	 parameters are real 

numbers, which are zero in the 2D-FIR filters 

case, and the ℎ9: coefficients are the two-

dimensional Markov parameters given by [5] 

ℎ90 = T���L���9��P���, ℎ0: = T���L�O�:��P���, ℎ9: = T���L�O�:��L�N�L���9��P���,   �7, 8� > �0,0�. 
 

These parameters are also the coefficients of 

the two-dimensional impulse response of the 

2D-FIR filter, and the corresponding transfer-

function is 

 ��6,
� = T�6a&⨁
a' − L���P+D,         

where                                                                     L = GL��� 0L�N� L�O�K , P = GP���P���K,	 T = ST��� T���U. 
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4. Application of the balanced 
realization method  

In the sequel, a digital separable 2D-IIR 

filter with a linear phase response is obtained 

by applying the balanced realization method to 

a high-order 2D-FIR filter, designed by the 

windowing method. Several properties 

associated to the proposed approach are also 

presented and proven. Moreover, an example is 

included to illustrate the performance of the 

method. 

The balanced realization method was 

intensively applied in the past for 1D, as well 

as 2D dynamical systems [12, 13].  The 

method delivers economical systems with a 

reduced information complexity [7, 14].  This 

paper shows that the method is very useful in 

approximating digital 2D-FIR filters. 

 

4.1.   Method  description 

The generalization of Gramians for 2D systems 

is proposed in [6]. The following definition is 

introduced for a given realization of type (6). 

 

Definition 4.1: For a 2D realization cL, P, T, Vd, the controllability and 

observability Gramians  e and Q are given by  

 e = ����:�� ∮ ∮ g�6, 
�|D|��|<|�� g∗�6, 
�. �<< �DD  , i = ����:��∮ ∮ +�6, 
�|D|��|<|�� +∗�6, 
�. �<< �DD ,               (8)                                                          

 

where g�6, 
� = S�6a&⨁
a'� − LU��P and +�6, 
� = TS�6a&⨁
a'� − LU��.  

 

If cL, P, T, Vd is  locally  controllable  and  

observable [11], the submatrices  e���, e�O�, i��� and i�O� of e and i are positive definite 

(PD) matrices [6]. 

 

Definition 4.2: The model is balanced in the 

horizontal and vertical directions since the 

horizontal and vertical controllability and 

observability Gramians are diagonal and equal, 

i.e.:   

e��� = i��� = Σ��� = diagop����, ⋯ , p&���q,  e�O� = i�O� = Σ�O� = diagop��O�, ⋯ , p'�O�q,  (9)                                                                  

where p9���, 7 = 1,⋯ ,�, and p:�O�, 8 = 1,⋯ , � 

are the  Hankel singular values  of the 

horizontal and vertical subsystem, respectively. 

 

The aim is to obtain a realization of 

reduced order ��r, �s�, by suitably truncating 

the original realization. This is done by 

estimating the order of the reduced model, 

which satisfies the following conditions of the 

Hankel-norm error [15]:   

 ∑ tp9���uO&r9�� /∑ tp9���uO&9�&r*� ≥ wxy�, and   

∑ tzA�{�u{@rAB�∑ tzA�{�u{@AB@r|� ≥ wxy�.                                  (10)  

                            

When �r ≠ 0,� and �s ≠ 0, �, wxy� and wxy� can be specified graphically by plotting 

the ratio of each  left part in (10) as a function 

of �r   and 	�s, respectively. Generally, wxy� 

and wxy� should be much larger than unity. 

      It is shown in [6] that the 2D Gramians 

above can be expressed as follows  

 

e =~~�9:
�
:�0

�
9�0 �9:]  

 

i =~~� �L9:] �T]T�L9:���� 					�L9:] �T]T�L9*�,:�������L9:] �T]T�L9��,:*���N� 			�L9:] �T]T�L9:��O� ��
:�0

�
9�0 , 

 

 

where 

                       		�9: =
�L9��,: GP���0 K + L9,:�� � 0P����,													�7, 8� > �0,0�,0,																																																														�7, 8� = �0,0�, !     

 and  L9: denoting the transition matrix of 

the 2D system 

 L9: 	= L�0L9��,: + L0�L9,:��, �7, 8� > �0,0�, 
and L�0 = GL��� L���0 0 K , L0� = � 0 0L�N� L�O��. 

 

Theorem 4.1: The realization cL, P, T, Vd and 

its dual  cL] , T] , P] , V]d satisfy e = i�  and i = e�, where the subscript d denotes dual.  
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The dual realization is also denoted by cL� , P� , T� , V�d. 
In terms of 2D realization models, using the 

backward operators 6��  
and	
��, the duality 

between the systems cL, P, T, Vd and cL] , T] , P] , V]d is analogue to the 1D case. 

Using the above result, it is possible to 

redefine the controllability and observability 

Gramians as follows. 

 

Definition 4.3: For a 2D system cL, P, T, Vd, 
the controllability and observability  Gramians 

are defined by  e = ∑ ∑ �9:�:�0�9�0 �9:] , i = ∑ ∑ ��?A�:�0�9�0 ��?A] ,      (11) 

where  

                           ��?A =
�L�?>�,A GT����0 K + L�?,A>� G 0T����K,								�7, 8� > �0,0�,0,																																																														�7, 8� = �0,0�, ! 
 

with   ��?A and  L�?A related to the quantities of 

the dual system, corresponding to Mij and Aij, 

respectively, of the given system, and  

L�?A = � L9:���� L9��,:*��N��
L9*�,:������ L9:�O�� �. 

 

Alternatively, the Gramians can be defined 

as follows  

 

e =~~� �L�?A] �PP]�L�?A���� �L�?A] �PP]�L�?|�,A>������L�?A] �PP]�L�?>�,A|���N� �L�?A] �PP]�L�?A��O� ��
:�0

�
9�0 , 

i =
∑ ∑ � �L9:] �T]T�L9:���� 					�L9:] �T]T�L9*�,:�������L9:] �T]T�L9��,:*���N� 			�L9:] �T]T�L9:��O� ��:�0�9�0 . 

 

Theorem 4.2: 

 �LeL] −e���� = −P���P����, �LeL] −e��O� = −P���P����, �LiL] − i���� = −T����T���, �LiL] − i��O� = −T����T���. 
 

 Proof: The proof directly follows by replacing e and Q by their values in (11). 

 

Theorem 4.3: For a stable, discrete, separable, 

locally controllable and observable 2D system, 

cL, P, T, Vd, the off-diagonal submatrices, e���, e�N�,  i��� and i�N� of the Gramians are 

zero. 

 

Proof: The proof  follows by replacing L��� = 0 in (8).  

  

Theorem 4.4: The Gramians e and  Q of a 

stable, separable, locally controllable and 

observable 2D realization, cL, P, T, Vd, satisfy 

the following relations: 

 

 L���e���L���� −e��� = −P���P���], L���i���L���� − i��� = − �T���]T��� + L�N��i�O�L�N�� 
    ≡ −����]���� 
 

  

  	
 L�O�e�O�L�O�� − e�O� = −�P���P���] + L�N�e���L�N���≡ −��������] L�O��i�O�L�O� − i�O� = −T���]T���,      (12)                                             

 

with 
 

	���� = G T�����O�L�N�K ∈ ℝ mnq ×+ )( ,	 
���� = SP��� L�N�����U 	 ∈ ℝ )( mpn +× , 
where ��O�]��O� = i�O�, and ��������] = e���. In 

addition, each of the 1D systems �L���, P���, ����� and �L�O�, ����, T���� is 

asymptotically stable, controllable and 

observable. Therefore, if the 2D system is 

balanced, then these systems are balanced too.  

  Proof: By replacing  L��� = 0 in 

Theorem 4.2, and taking into account the 

results in Theorem 4.3, we obtain  

 LeL] − e = 	 GL��� 0L�N� L�O�K Ge��� 00 e�O�K GL���� L�N��0 L�O��K− Ge��� 00 e�O�K = GL���e���L���� − e��� L���e���L�N��L�N�e���L���� L�N�e���L�N�� + L�O�e�O�L�O�� − e�O�K. 
  

Then �LeL] −e���� = L���e���L���� −e��� 											= −P���P���]. 
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This is the first relation.  Since 

�LeL] −e��O� = −P���P���] 						= 	L�N�e���L�N�� + L�O�e�O�L�O�� − e�O�, 
then L�O�e�O�L�O�� − e�O� =	−P���P���]L�N�e���L�N�� 

                  =− [ ][ ]TSABSAB )1()3()2()1()3()2(
 

																						=−��2���2�w.  
Since   ���� = SP��� L�N�����U, the third 

relation is proven. The proof follows the same 

procedure for the second and fourth relation. 

The asymptotic stability of 1D systems is clear. 

The local controllability and observability 

requirement implies the controllability of	 �L���, P����	and observability of	�L�O�, T����. 
Indeed, if  �L�O�, T���� is not observable, there 

is a nonzero vector ν є ₵n
  and  a scalar  λ є ₵ 

so that L�O�� = ��,    �∗L�O�� = �∗�∗ ;     T���� = 0,    �∗T���� = 0. 
 

Pre- and post-multiplying the expression L�O��i�O�L�O� − i�O� = −T���]T���		by �∗ and �, respectively, we get �|�|� − 1�	�∗i�O�� = 0.  

The local controllability and observability 

imply also that i�O� is PD, and hence, |�| = 1, 

which is not possible since L�O� is 

asymptotically stable. Then, �L�O�, T����  is 

observable. Similarly, it can be proven that  �L���, P���� is controllable. Since the 2D 

separable system is balanced, (9) is satisfied. 

The statements above show that the two 1D 

systems are balanced. 

4.2. Reduction procedure 
 

Inputs: Impulse response ℎ��, ��  of the 2D 

full-order system (filter). 

Step 1: Write  H(z,w), the transfer-function of ℎ��, ��,  in the separable form (5). 

Step 2: Transform ℎ��, ��  to a state-space 

realization, cL, P, T, Vd, in the canonical form 

in (7). 

Step 3: Compute the submatrices e���, e�O� 
and i���, i�O� of the controllability and 

observability Gramians, respectively, by 

solving the pairs of Lyapunov equations in 

(12). 

Step 4: Determine nonsingular transformation 

matrices w��� and w�O� by balancing the 

horizontal and vertical 1D subsystems 

represented by the pairs 	�e���, i����	and	�e�O�, i�O�� [15], 

respectively. 

Step 5: Set  w = Gw��� 00 w�O�K .     
Step 6:  Find the balanced realization �L�, P� , T�, V�� = cw��Lw, w��P, Tw, Vd. 
Step 7: Estimate the reduced order  ��r, �s�, of 

the reduced model using the Hankel-norm 

error criterion [16] in (10). 

Step 8: Extract the reduced order realization �L�, P�, T�, V� of order	��r, �s�, using the 

following partition of  {L�,  P� , T�d	 
L� = �L�� 0L�N L�O� = �L�� ∗ 0 0∗ ∗ 0 0L�N ∗ L�O ∗∗ ∗ ∗ ∗�, 
P� = �P��P���			T� = ST�� T��U.	P� = �P��P��� = �P��∗P��∗ �,	 
 T� = ST�� T��U = ST�� ∗ T�� ∗U, 

 L� = �L�� 0L�N L�O� , P� = �P��P���,			T� = ST�� T��U. 
 

Outputs: The transfer-function of the 

reduced order filter starting from the state-

space realization of the procedure in [17], 

where	���6, 
� is given by 

���6, 
� = SD@r D@r>� ⋯ �UE��S<=� <=�>� ⋯ �U�SD@r D@r>� ⋯ �UF��S<=� <=�>� ⋯ �U� 

. 

4.3.  Properties of the reduced model 	
The reduced model resulting from the 

balanced realization procedure has some 

interesting properties. These properties are 

presented in this subsection. 

a- For a balanced, stable, separable, 

locally controllable and observable 2D 

WSEAS TRANSACTIONS on SIGNAL PROCESSING Amel Baha Houda Adamou-Mitiche, Lahcène Mitiche

E-ISSN: 2224-3488 242 Issue 4, Volume 9, October 2013



 

 

 
realization,	cL, P, T, Vd,				 the horizontal 

and vertical subsystems are also stable. 

b- Given a balanced, stable, separable, 

locally controllable and observable 2D 

realization, cL, P, T, Vd, the proposed 

reduction procedure preserves the 

stability of the resulting reduced order 

model. 

c- Given a balanced, stable, separable, 

locally controllable and observable 2D 

realization, cL, P, T, Vd, if p&r��� > p&r*����  

and	p's�O� > p's*��O�
, then the reduced order 

realization is locally controllable and 

observable.  

d- Given a balanced, stable, separable, 

locally controllable and observable 2D 

realization, cL, P, T, Vd, if p&r��� > p&r*����  

and	p's�O� > p's*��O� , then the realization of 

reduced order ��r, �s�  is minimal [18].  

e- The frequency error bound is given 

below, using the results in [19].  

Assume that  ��6,
� and ���6,
�  
denote the 2D transfer-function 

matrices of the original and reduced 

system, respectively. For convenience, 

assume that the reduction is applied to 

the vertical subsystem only. Hence a 

filter of degree �ℎ − vn̂  is extracted 

from the original filter of degree �ℎ − �¢. Then, we have 

∆��6,
� ≡ ��6,
� − ���6, 
�. 
Hence, we obtain   ‖∆��6, 
�‖� ≤2∑ p9�O�'9�'s*� �1 + 2∑ p:&:�� 〈L���, P���, �Σ������/�〉�,            
where p:〈∙,∙,∙〉, j=1,…,m, correspond to 

the Hankel singular values of the 

asymptotically stable, controllable and 

observable system c. , . , . d, and  Σ��� is 

the diagonal matrix defined in (9). 

f- The proposed method preserves the 

phase of the 2D-filter after reduction. 

Theorem 4.5 : If		 s̈���, ��� 
and	¨���, ���  are the phases of the 

reduced filter and of the initial filter, 

respectively, and Ωp denotes the 

bandwidth region, then 

maxΩZ | s̈���, ��� − ¨���, ���| ≈ ­& ≤ �®̂��°±, 

where  ²̂ denotes the estimation of the 

maximum error in the bandwidth 

region between the initial and reduced 

filter, ³Z is the tolerance in the 

bandwidth of the initial filter, and 

­& = maxΩ´ µ1 − ����, ���¶�����, ���¶�����, ���|����, ���|µ. 
      Proof : We can write  

����, ��� = ����, ���²:·�4�,4��, 
�����, ��� = �����, ���²:·r�4�,4��. 

The approximation error in the phase can be 

written as  

| s̈���, ��� − ¨���, ���| = µln ¹����, ��������, ��������, �������, ���ºµ 																																						= |ln�1 + ­�|, 
where δ is estimated as follows 

|­| = µ1 − ������µ = µ��� − ���� + ���� − ������ µ
≤ ¶���� −���¶ + ¶����� −��¶���

= �� »¶��¶ − |�|» + ��¶�� − �¶���≤ 2¶�� − �¶� . 
Since the balanced realization method is used, 

the approximation error ²̂ ≪ 1	becomes very 

small if the two terms		∑ p9���&9�&r*�  

and		∑ p:�O�':�'s*�  are also very small; in this 

case, the phase of the initial filter is preserved 

after reduction.  

 

 4.4.  Illustrative  example 
 

An example is given in order to show the 

efficiency of the proposed reduction method. 

We start with a low-pass 2D-FIR filter 

designed by the windowing method, and 

having a full-order  ��, �� = �20,20�;  this 

filter is separable, which allows us to represent 

it in the state-space as a locally controllable 

and observable canonical form. By applying 

the developed balanced realization method to 

the obtained model, this method allows to 

extract a reduced order model ��r, �s� = �12,12�, 
based on the Hankel-norm error criterion. We 
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show the frequency response of the initial filter 

and of its reduced order approximant, as well 

as the error between them. Four measures are 

presented to demonstrate the efficiency of the 

reduction procedure; the first measure is the 

Euclidian norm of the error	�³��, and the 

second is the error criterion in the  ½� norm �³��.  These measures are given in [12] as 

follows  

³� ≜ max�9,:� ¶�9: −��9:¶max�9,:� ¶�9:¶ , and		 
³� ≜�∑ ∑ ��9: −��9:��:9 ��/� / �∑ ∑ ��9:��:9 ��/�. 

The other measures are the maximal error in 

the bandwidth region Rp and the maximal error 

in the cut-off region Rs , given as 

¿ÀÀ��Z� = max�9,:�∈Á±¶�9: −��9:¶, 
and  

¿ÀÀ��Â� = max�9,:�∈ÁÃ¶�9: −��9:¶. 
The initial model is always stable and with 

linear phase.  We show that the proposed 

reduction procedure preserves the stability and 

phase linearity of the reduced filter. 

 Since the reduced filter is separable, the 

stability test is very simple:  a separable system 

is stable if		,�L��� < 1, ,�L�O� < 1, where ρ(·) 

denotes the spectral radius of (·). 

The linearity test in the 2D case follows an 

indirect procedure: the transfer-

function	���6, 
� is evaluated in fixed points 

on the unit circle 69 = ²:��9/E or 
9 = ²:��9/Å 

for one of the two variables 	�6, 
�, and the 

test becomes one for the one-dimensional 

systems		��:�6� or  ��9�
�.   
Figure 1 clearly shows that the frequency 

behavior of the initial filter and its reduced 

order approximant are very close, and the error 

is very small for all frequencies in the 

bandwidth. Figure 2 shows the graphs of the 

phase response of the reduced order (12, 12) 

filter, by evaluating the two-dimensional 

transfer-function  ���6,
�	in three fixed points 

on the unit  circle 	
9 = ²:��9/Å, where � = 64 and 7 = c10,30,64d. 

We see that the phase is always linear in the 

bandwidth (0-0.6), and this implies that the 

reduction procedure preserves the linearity of 

the phase of the initial filter. 

The results shown in Table 1 illustrate the 

performance of the proposed reduction 

procedure.  It can well be seen that the error is 

very small even if the chosen order of the 

reduced model is small compared to the order 

of the initial model; in addition, the stability is 

always guaranteed.  

5. Conclusion 
 
The basic idea is the synthesis  of  new 

digital filter using model order reduction. 

Modeling approach of 2D-FIR filters in 

state-space, based on the Givone-Roesser’s 

model is used.  They belong to the class of 

separable filters. Then, the model reduction 

based on balanced realizations is achieved 

based on two important parameters the 

Gramians.   

For a balanced 2D system, it is possible to 

apply the criterion of the Hankel-norm error 

for retaining the dominant states and 

removing the states with low energy; the 

resulting system represents a simplified 

version of the initial system. 

The following conclusions are drawn 

from   the simulation results: 

- The reduced order filter is very close 

to the full-order filter; this is verified by 

the error gap and other measures. The 

proposed reduction approach, based on the 

SVD criterion, presents the advantage of 

removing the low energy modes, thus 

offering a good approximation. and  

preserves stability of the reduced order 

filter. The initial filter phase is preserved 

after applying the proposed reduction 

technique. 

- The only inconvenient of the balancing 

technique is, maybe, the high information 

complexity needed for computing the 

controllability and observability Gramians. 

The derivation of a canonical form before 

reduction is very important for minimizing 

this complexity; it is shown that the 

representation of the 2D-FIR filters in such 

a form is possible. 
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Fig. 1 – Frequency responses of the 

original (20, 20) filter, the reduced order 

(12, 12) filter, and the error between them. 

 

 

 

 

Table 1 – Performance parameters for different reduced order 

models. 

�wxy�, wxy�� �10N, 10N� �5× 10N, 5× 10N� �10O, 10O� 
��r, �s� �10,10� �11,11� �12,12� 
¿ÀÀ��Z� 0.06151

3 

0.0452

55 

0.01346

1 ¿ÀÀ��Â� 0.07863

6 

0.0415

86 

0.01999

7 ³∞�%� 7.84 4.50 1.99 

³��%� 4.89 2.86 1.27 

,�L��� 0.391 0.8370 0.8154 ,�L�O� 0.8391 0.8370 0.8154 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

 

                                           

 

 

 

 

 

 

            

 

 

Fig. 2 – Phase response of the 1D filter after 

evaluation of the reduced order (12, 12) 2D filter in 

three fixed points on the unit circle ω1 =  e
j2π·10/64

, 

ω2 =  e
j2π·30/64

 and ω3 =  e
j2π·64/64

. 

 

 

-1
-0.5

0
0.5

-1
-0.5

0
0.5

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

f
1

Frequency  Error

f
2

M
a

g
n

it
u

d
e

Phase Responses 

0 0.1 0. 0.3 0.4 0.5 0. 0.7 0.8 0.9 1 
-25 

-20 

-15 

-10 

5 

0

5

Frequency (Hz)

 

 
ω=j*2*pi*10/64

ω=j*2*pi*30/64

ω=j*2*pi*64/64
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